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Abstract. The twisting cocycle for a quantized PoineaalgebraP(3 + 1) introduced by
Ballesteroset al is evaluated. The solution is obtained as a specific case of a formulated
multidimensional generalization of the non-standard (Jordanian) quantizatid(2pf

1. Introduction

Recently Ballesterost al built a quantum deformation of the Poinéaalgebra [1]. The
guantization found was generated by a triangular classiealtrix and, according to
Drinfeld’s theory [2], should be a twisting df (P(3 + 1)). Its universalR-matrix was
obtained on the basis of th&-matrix approach [3], and the bicrossproduct structure
revealed in [4]. In the present paper we evaluate the twisting 2-cocycle governing the
deformation process and thus recover the universal matrix from the well known formula
R = t(FHF [2]. Knowledge of the twisting elemenF is very important, because it
deforms not only the symmetry algebra but also the geometry of the space—time. Twisting of
a universal enveloping algebra induces coherent transformations in the modules and allows
one to obtain important objects automatically; for example, to construct invariant equations
and their solutions [6]. In order to solve the problem we resort to the theory of quantizing
Lie algebras with quasi-Abelian dual groups (the semidirect product of two commutative
subgroups) [7-9]. In the present paper we first consider a class of algebras along the lines
of that theory. That class may be regarded as a direct generalization of the triangular or
non-standard deformation of the Borel subalgebral/i2) [10, 11]. We find the general
expression for twisting elements and univer&imatrices and then apply the technique
developed to the specific case Bf3 + 1).

2. General consideration

Let L = H<V be a Lie algebra splitting into a semidirect sum of its two Abelian
subalgebras, with the basic elemefise H and X, € V:

[H,. X,] = B), Hs.
Suppose that its dual algebit& also has the structure of a semidirect sHrh-V*, which

is defined via a commutative set of matriceg)”. To match the consistency condition

uponL andL* we require
(@) B, = (@) B,
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There exists a quantizatioty, (L) of the universal enveloping algebrd(L) with the
relations on the generators [8]

et —\" .
H,X,)=|—=———) B H 1
%0 = (S ) B @
and the coproduct
Ay(H)=H 1+1® H; Ag(X) =€) @ X, + X, ® 1 2)

The symbol/ stands for the identity matriX/* = §*, anda - H means)_, &' H;. The
apparent counit i&(X,) = ¢(H;) = 0, and the antipode may readily be found from the
coproduct with the use of the defining axioms. Its explicit form is irrelevant to our study.
We are interested only in sudh, (L) which are obtained by the twisting of the classical
universal enveloping algebrd$(L). The goal of our investigation is to find the explicit
form of the elementF € U(L) ® U(L) governing that process and the univerRamatrix
of the algebral, (L). Unexpectedly, it appears easier to start frogi(L) rather than from
the classical algebra, find a solutidnto the twist equation, and then return &8alL) (we
are going to use the group properties of twisting &he= ®~* in particular [2]).
We seek a solution to the twist equation

(A ®id)(P) P12 = (id @ Ay)(P) D23 ©))
in the form

O =expir'“H; ® X,) € Uy(L) ® Uy (L).
The classical skew-symmetriematrix then will ber = r'* (X, ® H; — H; ® X,,), and the
matricesa’ will be expressed through the structure constants bfy the formula

(@) = 3r/" B, )
Without any loss of generality we suppas¢o be non-degenerate, since otherwise we may
restrict ourselves to the imagéL*) = r'(L*) C L, which is a subalgebra ih, and twisting

a subalgebra induces that bbfas a whole.
Calculating both sides of equation (3)

. in gy in gy in(H. L in gy
(Aa®zd)(ef HK®X,L)er H,®X,l®l=er (H,®1®X,,+1®H,®X“)er H®X,®1

— er"ﬂ H;®1®X, er"ﬂ H®X,@1+ritr" H;®[H;, X, ]®X, er"ﬂ 1QH;®X,,

(id ® D) (&N IS = exp(r' (H; @ (€M)}, ® X, + H; © X, ® 1)
x e(’“l®H;®Xu

and then comparing them with each other and taking into account the commutation properties
of the generatorgH;) and(X,), we arrive at the condition

rH @ 1® X, +r'"r"H; ® [H;, X,1® X, = r'H; ® (")) ® X,

which, in its turn, yields-"" (8% +r/*B;,(H)) = r"*(€#)~. The latter is fulfilled provided
thatr/# B;, (H) = (€#)* — §/* which holds in view of (1) and (4).

Our next goal is to show that the formula(h) = ® A, (W)®, h e U,(L),
defines the classical comultiplication on the universal enveloping algéljtg. Due
to the non-degeneracy of thematrix, we can raise and lower indicedi* = ri*H;,
() = af, = ry (@), The matrix (r;,) is the inverse of(r'*): ritr;, = 51’ The
relations inU, (L) take the form

[H", X,] = (& — )~
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With the set of number§® fixed, let us introduce the entitigs*, defining them as

Kt =¢g"(] — e 2Hyr (5)
and evaluate the commutation relations betw&éhand X ,:

(K", X,] = £ (2 ™)fal )& —1)].

From the commutativity of the matriceg, and the conditiorwf;, = «f, following from

the classical Yang-Baxter equation, we fim, (€## — ) = ol (€*" — I)5. This is
verified by simple induction over powers of the mattix- H). Finally, we have

[K*, X,] = 20¥ K°
i.e. the classical commutation relations. The coproduct on the new generators is
A(KM) =K'"®1+ (") @ K".
With the use of this formula we calculate the twisted coproduct, which comes out as
AK) = e XA (K = K @1+ (e )@ K=K®1+1®K
AX) = e 185N, (X)el®X = e @ X + e "% (X @ 1)ef®X (6)
=X+ X1-E"-NHNeX=10X+X®1

We might consider that our goal had been achieved were we sure that the number of
independent generatoks* was the same as the dimensionality of spilceThat is not the

case in general, however, and it is determined by a particular choigé. dh the classical

limit we have

K" =§"(2a- H);y =[H",§"X,].

Thus, while £¢# takes all possible values the lineal Sp&rt) fills up the subspace
H’ = [H, V] c H. If that subspace coincides with the wholetbfve may state that, indeed,
twisting U, (L) with the element results inU(L). Let us show that ditH") < dim(H)

if and only if the subalgebr& and the centre of have a non-trivial intersection. Indeed,
because of the non-degeneracy of the classicahtrix there exists an isomorphism between
the linear space¥* andH (the basic element&* and X, turn out to be mutually dual).
The subspacéi’ is less thanH if and only if there is an elemenx, = &'X,, € H*,
orthogonal to the entirél’:

0= (Xo, [HM: Xv]) = ng“ffu
Due to the symmetry” = o, the latter expression is simply the matrix of the adjoint
representation d&) restricted to the subspadé. Let us summarize the results of our

study.

Theorem 1The elementd = exp(r’*H; ® X,) € Uy(L) ® Uy(L) is a solution to the
twist equation. Twistind/, (L) with the help of® gives the classical universal enveloping
algebraU (L) unlessV contains central elements. The univer&matrix for U, (L) is

R = expir'*X, ® H) exp(—r'"H; ® X,,). )

Expression (7) is an apparent generalization of &enatrix for U, (si/(2)) in the form
of Ogievetsky.

It becomes clear from the above study that the algelifad.) covered by the
theorem are completely specified by the set of commutative matsicesatisfying the
requiremento,,)] = (an)f,- Such matrices define an associative commutative multiplication
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X, 0 X, =aj,X, on the subspac¥ and vice versa. For an example of this kind, let us

take ()] = 87, whereu,v,0 = 0,...,n. Introduced thus, the, form an Abelian

matrix ring and define a semidirect sum= H <V with H ~ V*. They comply with the
condition of the theorem, since the matrtiy, the unity of the ring, has a maximum rank
equal torn + 1, and we may sef* = 83 in the transformation (5).

3. The universal R-matrix for the quantum Poincar & algebra

Let us apply the technique developed in section 2 to the quantum universal enveloping
Poincaé algebra. The deformation is generated by the twisting of the subalgebta
SpanEy1, E», P1, P>, P, K3), in terms of [1]. Introducing the notatio#l’ = —zE;,

H® = —zP,,Y; =2P;, Y3 = —2K3, i = 1, 2, the coproduct iU, (L) reads

Ay(H*Y=H"®1+1@ H*

A= ori+ree’

AY) =€ @Y+ Va0

AY) =" @YVs+Vs@e +eHlg - i@ He ™ + e H? g Y,
—Y,® H%e .

The non-vanishing commutators are
[H',Y;] =2sinh(H®) [H', Ys] = 2coshH3H' i=12
[H3, Y3] = 2sinhH3).

Correspondence with the notation of the previous paragraph is achieved through the
transformationX,, = Yv(ea'”)l”“ the matricesr being

0 01 0 0O 1 00
az=10 0 O a;=10 0 1 az=|10 1 O
0 0 O 0 0 O 0 0 1
Explicitly this results in the following change of variables:
Xy = v,e”’ X, = Y€/’ X3 = (Y1H' + Y,H? + Y3)e'”’

Transition to the classical generators is completed by the transformation (5), where we may
assume! = £2=0, £3 = 3, as the matrixys has a maximum rank of 3:

Kl= Hle—2H3 K2 = Hze’ZHg K3 = ;(1 _ esz3)
= = =3 .
The elementk* and X, obey the ordinary, non-quantum, commutation relation& df ):
[K', X;] = 2K [K, X3] = 2K' i=1,2
[K3, X3] = 2K3.
The quantizatior/ (L) — U,(L) is controlled by the twisting element
F =ex K ® X1+ K QX +1In(1 2K @ X =exp(—H" ® X,,)
B T R T I T 3) = g

and the quantum univers@&-matrix of the algebra/, (L) is given by
R =expX, ® H*)exp(—H" ® X,,).
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In order to compare this result with the expression for Eenatrix obtained in [3], let us
write out Hopf operations in terms of generatdf$, X,,, explicitly:

Ay(H") = H" @1+ 1® H" AeX) =T @X + X ®1
Ay(X3) = @ X+ X3 @14+ 28 H @ X1 + 28" H2 @ X,.
[H, X;] =€ —1 [H, X3] = & H i=12

[H3, X3] = 27 — 1.

Now note that, due to the comutation properties of the generatorsRthmatrix can be
factorized:

R — eX2®H? X1®H! o Xs®H® o~ H*®X3 g~ H'®X1 o~ H?®X

Substitution of H® = zP,, H' = zE;, X3 = —2K3, X; = 2P; into this formula leads

to the expression which differs from tifé-matrix of [3] by the permutation of the tensor
components. This indicates that our results are in accordance with [3], because the above
substitution provides the same multiplication but the opposite coproduct to those of [3].

4. Conclusion

The present investigation continues the series of works [7-9] devoted to a method of
constructing quantum Lie algebras with the use of a classical object, the dual group. Based
on the duality principle [12] viewing a quantum universal Lie algebra as a set of non-
commutative functions on the dual group, that method reduces the quantizaton problem to
finding a deformed Lie biideal consistent with a given coproduct [8]. Because of complicated
structure of a generic Lie group, that programme is feasible, however, for simple classes or
in separate particular cases. So is the set of quasi-Abelian groups which can be represented
as a semidirect composition of two commutative subgroups. The quantization theory for
such Lie algebras was developed in [8]. Simple as dual groups of that type may seem, they
occur rather frequently, especially in low dimensions [1, 13-16], and the corresponding
guantum algebras possess very diverse and non-trivial properties. So, that class includes
two non-isomorphic deformations 6f(s/(2)). A generalization of the standard quantization

was studied in detail in our work [9]. Here we have focused on a generalization of the
non-standard quantization ©f(2) or, to be more exact, its Borel subalgebra. The universal
R-matrix for the Jordaniab/, (s/(2)) was found by Ogievetsky and Vladimirov [10, 11, 17]

(see also [18]). In the present paper we have obtained explicit expressidh &md R

for the multi-dimensional generalization of the Borel subalgebra/{@). The technique
developed made it possible to built the twisting cocycle for the null-plane quantizaton of the
Poincaé algebraP (3 + 1) and to give the interpretation for the univergaimatrix found

in [3] in the framework of the twisting theory.
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