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A I Mudrov†
Department of Theoretical Physics, Institute of Physics, St Petersburg State University,
Ulyanovskaya 1, Stary Petergof, St Petersburg, 198904, Russia

Received 12 November 1997, in final form 1 April 1998

Abstract. The twisting cocycle for a quantized Poincaré algebraP(3 + 1) introduced by
Ballesteroset al is evaluated. The solution is obtained as a specific case of a formulated
multidimensional generalization of the non-standard (Jordanian) quantization ofsl(2).

1. Introduction

Recently Ballesteroset al built a quantum deformation of the Poincaré algebra [1]. The
quantization found was generated by a triangular classicalr-matrix and, according to
Drinfeld’s theory [2], should be a twisting ofU(P(3+ 1)). Its universalR-matrix was
obtained on the basis of theT -matrix approach [3], and the bicrossproduct structure
revealed in [4]. In the present paper we evaluate the twisting 2-cocycle governing the
deformation process and thus recover the universal matrix from the well known formula
R = τ(F−1)F [2]. Knowledge of the twisting elementF is very important, because it
deforms not only the symmetry algebra but also the geometry of the space–time. Twisting of
a universal enveloping algebra induces coherent transformations in the modules and allows
one to obtain important objects automatically; for example, to construct invariant equations
and their solutions [6]. In order to solve the problem we resort to the theory of quantizing
Lie algebras with quasi-Abelian dual groups (the semidirect product of two commutative
subgroups) [7–9]. In the present paper we first consider a class of algebras along the lines
of that theory. That class may be regarded as a direct generalization of the triangular or
non-standard deformation of the Borel subalgebra insl(2) [10, 11]. We find the general
expression for twisting elements and universalR-matrices and then apply the technique
developed to the specific case ofP(3+ 1).

2. General consideration

Let L = H GV be a Lie algebra splitting into a semidirect sum of its two Abelian
subalgebras, with the basic elementsHi ∈ H andXµ ∈ V:

[Hj,Xµ] = BijµHi.
Suppose that its dual algebraL ∗ also has the structure of a semidirect sumH∗ FV∗, which
is defined via a commutative set of matrices(αi)µν . To match the consistency condition
uponL andL ∗ we require

(αi)µν B
j

kµ = (αj )µν Bikµ.
† E-mail address: aimudrov@dg2062.spb.du
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There exists a quantizationUα(L) of the universal enveloping algebraU(L) with the
relations on the generators [8]

[Hj,Xµ] =
(

e2α·H − I
2α ·H

)ν
µ

BijνHi (1)

and the coproduct

1α(Hi) = Hi ⊗ 1+ 1⊗Hi 1α(Xµ) = (e2α·H )νµ ⊗Xν +Xµ ⊗ 1. (2)

The symbolI stands for the identity matrixIµν = δµν , and α · H means
∑

i α
iHi . The

apparent counit isε(Xµ) = ε(Hi) = 0, and the antipode may readily be found from the
coproduct with the use of the defining axioms. Its explicit form is irrelevant to our study.

We are interested only in suchUα(L) which are obtained by the twisting of the classical
universal enveloping algebrasU(L). The goal of our investigation is to find the explicit
form of the elementF ∈ U(L)⊗ U(L) governing that process and the universalR-matrix
of the algebraUα(L). Unexpectedly, it appears easier to start fromUα(L) rather than from
the classical algebra, find a solution8 to the twist equation, and then return toU(L) (we
are going to use the group properties of twisting andF = 8−1 in particular [2]).

We seek a solution to the twist equation

(1α ⊗ id)(8)812 = (id ⊗1α)(8)823 (3)

in the form

8 = exp(riµHi ⊗Xµ) ∈ Uα(L)⊗ Uα(L).
The classical skew-symmetricr-matrix then will ber = riµ(Xµ ⊗Hi −Hi ⊗Xµ), and the
matricesαi will be expressed through the structure constants ofL by the formula

(αi)µν = 1
2r
jµBijν . (4)

Without any loss of generality we supposer to be non-degenerate, since otherwise we may
restrict ourselves to the imager(L ∗) = rt (L ∗) ⊂ L , which is a subalgebra inL , and twisting
a subalgebra induces that ofL as a whole.

Calculating both sides of equation (3)

(1α ⊗ id)(eriµHi⊗Xµ)eriµHi⊗Xµ⊗1 = er
iµ(Hi⊗1⊗Xµ+1⊗Hi⊗Xµ)er

iµHi⊗Xµ⊗1

= er
iµHi⊗1⊗Xµer

iµHi⊗Xµ⊗1+riµrjνHi⊗[Hj ,Xµ]⊗Xνer
iµ1⊗Hi⊗Xµ

(id ⊗1α)(e
riµHi⊗Xµ)er

iµ1⊗Hi⊗Xµ = exp
(
riµ(Hi ⊗ (e2α·H )νµ ⊗Xν +Hi ⊗Xµ ⊗ 1)

)
× er

iµ1⊗Hi⊗Xµ

and then comparing them with each other and taking into account the commutation properties
of the generators(Hi) and(Xµ), we arrive at the condition

riµHi ⊗ 1⊗Xµ + riµrjνHi ⊗ [Hj,Xµ] ⊗Xν = riµHi ⊗ (e2α·H )νµ ⊗Xν
which, in its turn, yieldsriν(δµν + rjµBjν(H)) = riν(e2α·H )µν . The latter is fulfilled provided
that rjµBjν(H) = (e2α·H )µν − δµν which holds in view of (1) and (4).

Our next goal is to show that the formula1(h) = 8−11α(h)8, h ∈ Uα(L),
defines the classical comultiplication on the universal enveloping algebraU(L). Due
to the non-degeneracy of ther-matrix, we can raise and lower indices:Hµ = riµHi ,
(αµ)

ρ
ν = αρµν = riµ(α

i)ρν . The matrix (riµ) is the inverse of(riµ): riµrjµ = δij . The
relations inUα(L) take the form

[Hµ,Xν ] = (e2α·H − I )µν .
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With the set of numbersξν fixed, let us introduce the entitiesKµ, defining them as

Kµ = ξν(I − e−2α·H )µν (5)

and evaluate the commutation relations betweenKµ andXν :

[Kµ,Xν ] = ξβ(e−2α·H )ρβ(2α
µ
ρσ )(e

2α·H − I )σν .
From the commutativity of the matricesαµ and the conditionαρµν = αρνµ following from
the classical Yang–Baxter equation, we findαµρσ (e

2α·H − I )σν = αµνσ (e2α·H − I )σρ . This is
verified by simple induction over powers of the matrix(α ·H). Finally, we have

[Kµ,Xν ] = 2αµσνK
σ

i.e. the classical commutation relations. The coproduct on the new generators is

1α(K
µ) = Kµ ⊗ 1+ (e−2α·H )µν ⊗Kν.

With the use of this formula we calculate the twisted coproduct, which comes out as

1(K) = e−H⊗X1α(K)e
H⊗X = K ⊗ 1+ (e2α·He−2α·H )⊗K = K ⊗ 1+ 1⊗K

1(X) = e−H⊗X1α(X)e
H⊗X = e2α·H ⊗X + e−H⊗X(X ⊗ 1)eH⊗X

= e2α·H ⊗X +X ⊗ 1− (e2α·H − I )⊗X = 1⊗X +X ⊗ 1.

(6)

We might consider that our goal had been achieved were we sure that the number of
independent generatorsKµ was the same as the dimensionality of spaceH. That is not the
case in general, however, and it is determined by a particular choice ofξµ. In the classical
limit we have

Kµ = ξν(2α ·H)µν = [Hµ, ξνXν ].

Thus, while ξµ takes all possible values the lineal Span(Kµ) fills up the subspace
H ′ = [H,V] ⊂ H. If that subspace coincides with the whole ofH we may state that, indeed,
twisting Uα(L) with the element8 results inU(L). Let us show that dim(H′) < dim(H)
if and only if the subalgebraV and the centre ofL have a non-trivial intersection. Indeed,
because of the non-degeneracy of the classicalr-matrix there exists an isomorphism between
the linear spacesV∗ andH (the basic elementsHµ andXµ turn out to be mutually dual).
The subspaceH ′ is less thanH if and only if there is an elementX0 = ξ

µ

0 Xµ ∈ H∗,
orthogonal to the entireH ′:

0= (X0, [Hµ,Xν ]) = 2ξσ0 α
µ
σν.

Due to the symmetryαµσν = αµνσ , the latter expression is simply the matrix of the adjoint
representation ad(X0) restricted to the subspaceH. Let us summarize the results of our
study.

Theorem 1.The element8 = exp(riµHi ⊗ Xµ) ∈ Uα(L) ⊗ Uα(L) is a solution to the
twist equation. TwistingUα(L) with the help of8 gives the classical universal enveloping
algebraU(L) unlessV contains central elements. The universalR-matrix for Uα(L) is

R = exp(riµXµ ⊗Hi) exp(−riµHi ⊗Xµ). (7)

Expression (7) is an apparent generalization of theR-matrix for Uh(sl(2)) in the form
of Ogievetsky.

It becomes clear from the above study that the algebrasUα(L) covered by the
theorem are completely specified by the set of commutative matricesαµ, satisfying the
requirement(αµ)σν = (αν)σµ. Such matrices define an associative commutative multiplication
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Xµ ◦ Xµ ≡ ασµνXσ on the subspaceV and vice versa. For an example of this kind, let us
take (αµ)σν = δσµ+ν , whereµ, ν, σ = 0, . . . , n. Introduced thus, theαµ form an Abelian
matrix ring and define a semidirect sumL = H GV with H ∼ V∗. They comply with the
condition of the theorem, since the matrixα0, the unity of the ring, has a maximum rank
equal ton+ 1, and we may setξµ = δ0

µ in the transformation (5).

3. The universalR-matrix for the quantum Poincar é algebra

Let us apply the technique developed in section 2 to the quantum universal enveloping
Poincaŕe algebra. The deformation is generated by the twisting of the subalgebraL =
Span(E1, E2, P1, P2, P+, K3), in terms of [1]. Introducing the notationHi = −zEi ,
H 3 = −zP+, Yi = 2Pi , Y3 = −2K3, i = 1, 2, the coproduct inUα(L) reads

1α(H
µ) = Hµ ⊗ 1+ 1⊗Hµ

1α(Y1) = eH
3 ⊗ Y1+ Y1⊗ e−H

3

1α(Y2) = eH
3 ⊗ Y2+ Y2⊗ e−H

3

1α(Y3) = eH
3 ⊗ Y3+ Y3⊗ e−H

3 + eH
3
H 1⊗ Y1− Y1⊗H 1e−H

3 + eH
3
H 2⊗ Y2

−Y2⊗H 2e−H
3
.

The non-vanishing commutators are

[Hi, Yi ] = 2 sinh(H 3) [Hi, Y3] = 2 cosh(H 3)H i i = 1, 2

[H 3, Y3] = 2 sinh(H 3).

Correspondence with the notation of the previous paragraph is achieved through the
transformationXµ = Yν(eα·H )νµ, the matricesα being

α1 =
 0 0 1

0 0 0

0 0 0

 α2 =
 0 0 0

0 0 1

0 0 0

 α3 =
 1 0 0

0 1 0

0 0 1

 .
Explicitly this results in the following change of variables:

X1 = Y1eH
3

X2 = Y2eH
3

X3 = (Y1H
1+ Y2H

2+ Y3)e
H 3
.

Transition to the classical generators is completed by the transformation (5), where we may
assumeξ1 = ξ2 = 0, ξ3 = 1

2, as the matrixα3 has a maximum rank of 3:

K1 = H 1e−2H 3
K2 = H 2e−2H 3

K3 = 1
2(1− e−2H 3

).

The elementsKµ andXν obey the ordinary, non-quantum, commutation relations ofU(L):

[Ki,Xi ] = 2K3 [Ki,X3] = 2Ki i = 1, 2

[K3, X3] = 2K3.

The quantizationU(L)→ Uα(L) is controlled by the twisting element

F = exp

(
K1

2K3− 1
⊗X1+ K2

2K3− 1
⊗X2+ 1

2
ln(1− 2K3)⊗X3

)
= exp(−Hµ ⊗Xµ)

and the quantum universalR-matrix of the algebraUα(L) is given by

R = exp(Xµ ⊗Hµ) exp(−Hµ ⊗Xµ).



The null-plane quantized Poincar´e algebra 6223

In order to compare this result with the expression for theR-matrix obtained in [3], let us
write out Hopf operations in terms of generatorsHµ, Xµ, explicitly:

1α(H
µ) = Hµ ⊗ 1+ 1⊗Hµ 1α(Xi) = e2H 3 ⊗Xi +Xi ⊗ 1

1α(X3) = e2H 3 ⊗X3+X3⊗ 1+ 2e2H 3
H 1⊗X1+ 2e2H 3

H 2⊗X2.

[Hi,Xi ] = e2H 3 − 1 [Hi,X3] = e2H 3
Hi i = 1, 2

[H 3, X3] = e2H 3 − 1.

Now note that, due to the comutation properties of the generators, theR-matrix can be
factorized:

R = eX2⊗H 2
eX1⊗H 1

eX3⊗H 3
e−H

3⊗X3e−H
1⊗X1e−H

2⊗X2.

Substitution ofH 3 = zP+, Hi = zEi , X3 = −2K3, Xi = 2Pi into this formula leads
to the expression which differs from theR-matrix of [3] by the permutation of the tensor
components. This indicates that our results are in accordance with [3], because the above
substitution provides the same multiplication but the opposite coproduct to those of [3].

4. Conclusion

The present investigation continues the series of works [7–9] devoted to a method of
constructing quantum Lie algebras with the use of a classical object, the dual group. Based
on the duality principle [12] viewing a quantum universal Lie algebra as a set of non-
commutative functions on the dual group, that method reduces the quantizaton problem to
finding a deformed Lie biideal consistent with a given coproduct [8]. Because of complicated
structure of a generic Lie group, that programme is feasible, however, for simple classes or
in separate particular cases. So is the set of quasi-Abelian groups which can be represented
as a semidirect composition of two commutative subgroups. The quantization theory for
such Lie algebras was developed in [8]. Simple as dual groups of that type may seem, they
occur rather frequently, especially in low dimensions [1, 13–16], and the corresponding
quantum algebras possess very diverse and non-trivial properties. So, that class includes
two non-isomorphic deformations ofU(sl(2)). A generalization of the standard quantization
was studied in detail in our work [9]. Here we have focused on a generalization of the
non-standard quantization ofsl(2) or, to be more exact, its Borel subalgebra. The universal
R-matrix for the JordanianUh(sl(2)) was found by Ogievetsky and Vladimirov [10, 11, 17]
(see also [18]). In the present paper we have obtained explicit expression forF andR
for the multi-dimensional generalization of the Borel subalgebra insl(2). The technique
developed made it possible to built the twisting cocycle for the null-plane quantizaton of the
Poincaŕe algebraP(3+ 1) and to give the interpretation for the universalR-matrix found
in [3] in the framework of the twisting theory.
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